OSCILLATION THEOREMS FOR THE REAL, SELF-ADJOINT LINEAR SYSTEM OF THE SECOND ORDER*

BY

H. J. ETTLINGER

Introduction

It is the object of this paper to determine the number of oscillations of a linear combination of the form (2) for the systems (3) and (4). From these results, an oscillation theorem for the solution $u_p(x)$, corresponding to the pth characteristic number of (4), is obtained.

Given the second order self-adjoint linear differential equation

(1)
$$\frac{d}{dx}\left[K(x,\lambda)\frac{du}{dx}\right] - G(x,\lambda)u = 0$$

and two linear combinations of a solution which does not vanish identically and its first derivative,

(2)
$$L_i[u(x,\lambda)] = \alpha_i(x,\lambda)u(x,\lambda) - \beta_i(x,\lambda)K(x,\lambda)u_x(x,\lambda)$$
 (i = 1,2),

we shall impose the following conditions and shall assume that they are satisfied throughout this paper:

I. $K(x,\lambda)$, $G(x,\lambda)$, $\alpha_i(x,\lambda)$, $\beta_i(x,\lambda)$, $\alpha_{ix}(x,\lambda)$, $\beta_{ix}(x,\lambda)$ † are continuous, real functions of x in the interval

$$(X) (a \le x \le b)$$

and for all real values of λ in the interval

$$(\mathcal{L}_1 < \lambda < \mathcal{L}_2).$$

II. $K(x, \lambda)$ is positive everywhere in (X, λ) and

$$|\alpha_i| + |\beta_i| > 0$$

in (X, Λ) .

III. For each value of x in (X), K and G decrease (or do not increase)

$$\dagger f_{ix}(x,\lambda) = \frac{\partial}{\partial x} f_i(x,\lambda).$$

^{*} Presented to the Society, Sept. 6, 1917.

as λ increases. In no sub-interval of (X) are K and G simultaneously independent of λ and in no sub-interval of (X) is G identically zero.

IV. Either $\beta_i \equiv 0$ for all values of x and λ in (X, Λ) ; or else $\beta_i \neq 0$ in a < x < b for all λ 's in (Λ) and one of the following is true,

either (a) $\beta_i(a) \equiv 0$ for all λ 's in (Λ) , $\beta_i(b) \neq 0$, $-\alpha_i(b)/\beta_i(b)$ decreases (or does not increase) as λ increases;

or (b) $\beta_i(b) \equiv 0$, $\beta_i(a) \neq 0$ for all λ 's in (Λ), $\alpha_i(a)/\beta_i(a)$ decreases (or does not increase) as λ increases;

or (c) $\beta_i(a) \neq 0$, $\beta_i(b) \neq 0$, $\alpha_i(a)/\beta_i(a)$ and $-\alpha_i(b)/\beta_i(b)$ decrease (or do not increase) as λ increases.

V.*
$$\lim_{\lambda \to S_1} - \frac{\min G}{\min K} = -\infty,$$

$$\lim_{\lambda \to S_2} - \frac{\max G}{\max K_1} = +\infty.$$

I. THE STURMIAN SYSTEM

Concerning the system

(3)
$$\frac{d}{dx}\left[K(x,\lambda)\frac{du}{dx}\right] - G(x,\lambda)u = 0,$$

$$L_1[u(a,\lambda)] = 0, \qquad L_1[u(b,\lambda)] = 0,$$

STURM'S OSCILLATION THEOREM† may be stated with Bôcher‡ substantially as follows:

The system (3) satisfying conditions I-V has an infinite set of characteristic numbers such that

$$\mathcal{L}_1 < \lambda_0 < \lambda_1 < \lambda_2 < \cdots < \mathcal{L}_2$$

and $U(x, \lambda_p)$, the pth characteristic function, vanishes exactly p times on a < x < b.

We seek to determine the number of oscillations of $L_1[U(x,\lambda_p)]$. We notice first that if $\beta_1 \equiv 0$ for all values of x and λ in (X,Λ) , then all the zeros of $U(x,\lambda_p)$ and $L_1[U(x,\lambda_p)]$ coincide, since $\alpha_1(x,\lambda) \neq 0$. Hence we have for $\beta_1 \equiv 0$ precisely p zeros of $L_1[U(x,\lambda_p)]$ on a < x < b.

With Bôcher§ we define

$$\{\alpha_1 \, \beta_1\} \, = \, \beta_1 \, \alpha_{1x} \, - \, \alpha_1 \, \beta_{1x} \, + \, \frac{\alpha_1^2}{K} \, - \, \beta_1^2 \, G \, .$$

^{*} This condition may be replaced by other sets of conditions. See Bôcher, Leçons sur les Méthodes de Sturm (hereafter referred to as Leçons) (1917), chap. III, paragraphs 13-15.

[†]Journal de Mathématiques pures et appliquées, vol. 1 (1836), p. 106 ff.

Leçons, p. 63 ff.

[§] Leçons, p. 45.

Let $\beta_1 \neq 0$ in (X, Λ) , and consider the zeros of $U(x, \lambda)$ and $L_1[U(x, \lambda)]$. For $\lambda = \lambda_0$, $L_1[U(a, \lambda_0)] = 0$ and $L_1[U(b, \lambda_0)] = 0$, but $U(x, \lambda_0)$ does not vanish on (X). Hence $\{\alpha_1 \beta_1\}_{\lambda = \lambda_0}$ must vanish for some value of x in (X), since if $\{\alpha_1 \beta_1\}_{\lambda = \lambda_0} < 0$ throughout (X), $L_1[U(x, \lambda_0)]$ could vanish but once in (X); and if $\{\alpha_1 \beta_1\}_{\lambda = \lambda_0} > 0$ for every x in (X), $U(x, \lambda_0)$ would vanish once in (X). If $\{\alpha_1 \beta_1\}_{\lambda = \lambda_0} > 0$ for $\lambda \geq \lambda_1$ for all values of x in (X), then the zeros of $L_1[U(x, \lambda)]$ and $U(x, \lambda)$ separate. But $U(x, \lambda_p)$ vanishes exactly p times on a < x < b. Hence $L_1[U(x, \lambda_p)]$ vanishes p - 1 times on a < x < b for $p \geq 1$.

If $\beta_1(a,\lambda) \equiv 0$ in (Λ) , $\beta_1(x,\lambda) \neq 0$ for $a < x \leq b$, then $\alpha(a) \neq 0$ in (Λ) . Then the zeros of $L_1[U(x,\lambda_p)]$ and $U(x,\lambda_p)$ separate \uparrow each other on $a < x \leq b$, provided $\{\alpha_1 \beta_1\}_{\lambda=\lambda_p} > 0$. Let x_1 be the first zero of $U(x,\lambda_p)$ on $a < x \leq b$. Then

$$L_1[U(x_1,\lambda_p)] = -\beta_1(x_1,\lambda_p)K(x_1,\lambda_p)U_x(x_1,\lambda_p).$$

Now direct computation shows that

$$L_{1x}[U(a)] = \{\alpha_1 \beta_1\}_{x=a} \frac{K(a) U_x(a)}{\alpha_1(a)}.$$

But $K(a) U_x(a)$ and $K(x_1, \lambda_p) U_x(x_1, \lambda_p)$ have opposite signs, and $\operatorname{sgn} \beta_1(x_1, \lambda_p) = \operatorname{sgn} \beta_1(b)$. Hence

$$\operatorname{sgn} L_1[U(x_1,\lambda_p)] = \operatorname{sgn} L_{1x}[U(a)] \cdot \operatorname{sgn} \beta_1(b) \operatorname{sgn} \alpha_1(a).$$

Thus $L_1[U(x,\lambda_p)]$ vanishes or does not vanish in $a < x < x_1$ according as $\alpha_1(a)\beta_1(b)$ is negative or is positive respectively. Hence if $\alpha_1(a)\beta_1(b) > 0$. $L_1[U(x,\lambda_p)]$ has p-1 zeros on a < x < b, and if $\alpha_1(a)\beta_1(b) < 0$, $L_1[U(x,\lambda_p)]$ has p zeros on a < x < b, for $p \ge 1$.

If $\beta_1(b,\lambda) \equiv 0$ in (Λ) , $\beta_1(x,\lambda) \neq 0$ for $a \leq x < b$, then a similar argument can be made with the following result: if $\alpha_1(b)\beta_1(a) > 0$, $L_1[U(x,\lambda_p)]$ has p-1 zeros on a < x < b, and if $\alpha_1(b)\beta_1(a) < 0$, $L_1[U(x,\lambda_p)]$ has p zeros on a < x < b, for $p \geq 1$. Therefore

OSCILLATION THEOREM I. If $U(x, \lambda_p)$ is the pth characteristic function of the system (3) satisfying conditions I-V and if $\{\alpha_1 \beta_1\} > 0$ for $\lambda \ge \lambda_1$ for every x in (X), then $L_1[U(x, \lambda_p)]$ will vanish on a < x < b for $p \ge 1$, p times if

either $\beta_1 \equiv 0$ in (X, Λ) ;

or $\beta_1(a) \equiv 0$ in (Λ) , $\beta_1(x,\lambda) \neq 0$ in $a < x \leq b$ and $\alpha_1(a)\beta_1(b) < 0$; or $\beta_1(b) \equiv 0$ in (Λ) , $\beta_1(x,\lambda) \neq 0$ in $a \leq x < b$ and $\alpha_1(b)\beta_1(a) < 0$; p-1 times if

^{*} Bôcher, Lecons, p. 51.

[†] Ibid., p. 50.

 $[\]ddagger \operatorname{sgn} f = \operatorname{sign} \operatorname{of} f$.

either $\beta_1 \neq 0$ in (X, Λ) ;

or
$$\beta_1(a) \equiv 0$$
 in (Λ) , $\beta_1(x, \lambda) \neq 0$ in $a < x \leq b$ and $\alpha_1(a)\beta_1(b) > 0$;

or
$$\beta_1(b) \equiv 0$$
 in (Λ) , $\beta_1(x, \lambda) \neq 0$ in $a \leq x < b$ and $\alpha_1(b)\beta_1(a) > 0$.

Let $L[u(x,\lambda)] = \alpha(x,\lambda)u(x,\lambda) - \beta(x,\lambda)K(x,\lambda)u_x(x,\lambda)$, where $\alpha, \beta, \alpha_x, \beta_x$ are continuous in (X,Λ) . Then we may state

OSCILLATION THEOREM II. If $U(x, \lambda_p)$ is the pth characteristic function of (3) satisfying conditions I-V, where $\{\alpha_1 \beta_1\} > 0$, $\{\alpha\beta\} > 0$ for $\lambda \ge \lambda_1$ and $(\alpha_1 \beta - \alpha \beta_1) \ne 0$ in (X, Λ) , then $L[U(x, \lambda_p)]$ will vanish on a < x < b, for $p \ge 1$,

p times if

either $\beta_1 \neq 0$ in (X, Λ) ;

or
$$\beta_1(a) \equiv 0$$
 in (Λ) , $\beta_1(x, \lambda) \neq 0$ in $a < x \leq b$ and $\alpha_1(a)$ $\beta_1(b) > 0$;
or $\beta_1(b) \equiv 0$ in (Λ) , $\beta_1(x, \lambda) \neq 0$ in $a \leq x < b$ and $\alpha_1(b)$ $\beta_1(a) > 0$;

p+1 times if

either $\beta_1 \equiv 0$ in (X, Λ) ;

or
$$\beta_1(a) \equiv 0$$
 in (Λ) , $\beta_1(x, \lambda) \neq 0$ in $a < x \leq b$ and $\alpha_1(a)$ $\beta_1(b) < 0$;
or $\beta_1(b) \equiv 0$ in (Λ) , $\beta_1(x, \lambda) \neq 0$ in $a \leq x < b$ and $\alpha_1(b)$ $\beta_1(a) < 0$.

Proof: The zeros of $L_1[U(x,\lambda_p)]$ and $L[U(x,\lambda_p)]$ separate one another on (X).* But $L_1[U(a,\lambda_p)] = 0$ and $L_1[U(b,\lambda_p)] = 0$. Hence $L[U(x,\lambda_p)]$ has one more zero on a < x < b, for $p \ge 1$, than $L_1[U(x,\lambda_p)]$. This proves Theorem II.

II. THE GENERAL SELF-ADJOINT SYSTEM

Consider the system

(4)
$$\frac{d}{dx}\left[K(x,\lambda)\frac{du}{dx}\right] - G(x,\lambda)u = 0,$$

$$L_1[u(a,\lambda)] = L_1[u(b,\lambda)], \qquad L_2[u(a,\lambda)] = L_2[u(b,\lambda)],$$

where L_1 and L_2 are defined as in (2) and $\beta_2 \neq 0 \uparrow$ in (X, Λ) . We impose further conditions:

VI.
$$\{\alpha_{i} \beta_{i}\} \neq 0 \text{ for } \lambda \geq \lambda_{1},$$
VII.
$$\alpha_{1} \beta_{2} - \alpha_{2} \beta_{1} \equiv -1 \text{ in } (X, \Lambda),$$
VIII.:
$$\begin{vmatrix} \alpha_{1}(a) & \beta_{1}(a) & \alpha_{1}(b) & \beta_{1}(b) \\ \alpha_{2}(a) & \beta_{2}(a) & \alpha_{2}(b) & \beta_{2}(b) \\ \Delta a_{1}(a) & \Delta \beta_{1}(a) & \Delta \alpha_{1}(b) & \Delta \beta_{1}(b) \\ \Delta \alpha_{2}(a) & \Delta \beta_{2}(a) & \Delta \alpha_{2}(b) & \Delta \beta_{2}(b) \end{vmatrix} \geq 0.$$

^{*} Bôcher, Lecons, p. 50.

[†] This restriction does not involve a loss of generality, since if $\beta_1 \neq 0$, $\beta_2 = 0$ then we may interchange L_1 and L_2 .

 $[\]ddagger \Delta f = f(\lambda + \Delta \lambda) - f(\lambda) \text{ for } \Delta \lambda > 0.$

In a recent paper* the writer proved the following theorem concerning the system (4), satisfying conditions I-VIII:

There exists one and only one characteristic number of (4) between every pair of characteristic numbers of the Sturmian system (3). If λ_p represents the ordered characteristic numbers of (3) and l_p those of (4) (account being taken of their multiplicity) then

Case I. l_p is in the interval $(\lambda_p, \lambda_{p+1})$ if $L_2[U(b, \lambda_0)] \cdot \phi(\mathcal{L}_1 + \epsilon) > 0$.† Case II. l_p is in the interval $(\lambda_{p-1}, \lambda_p)$, $p \ge 1$, if $L_2[U(b, \lambda_0)] \cdot \phi(\mathcal{L}_1 + \epsilon) < 0.$

Let $u_p(x) = u(x, l_p)$ be the pth characteristic function of (4). We proceed to consider the number of oscillations of $L_1[u_p(x)]$. We notice first that if $\lambda = l_p$ is a double characteristic number, then l_p coincides with λ_{p-1} , λ_p , or λ_{p+1} , and $L_1[u_p(x)]$ will have the number of oscillations designated by Theorem I.

If $\lambda = l_p$ is a simple value, we may discriminate between Case I and Case II, following a method due to Birkhoff.‡ If $\beta_1 \equiv 0$ in (X, Λ) , the sign of $L_2[U(b,\lambda_0)]$ is the same as $-\alpha_1(a)\alpha_1(b)$, which is negative, since $\alpha_1 \neq 0$ in (X, Λ) . Hence $L_2[U(b, \lambda_0)]$ is negative. Also $\phi(\mathcal{L}_1 + \epsilon)$ has the sign of $-\beta_2(a)\beta_2(b)$, but $\beta_2 \neq 0$ in (X, Λ) . Hence $\phi(\mathcal{L}_1 + \epsilon)$ is negative, and we have Case I where l_p is on the interval $\lambda_p < \lambda < \lambda_{p+1}$. By Theorem I, $L_1[U(x, \lambda_p)]$ vanishes exactly p times on a < x < b for $p \ge 1$, and $L_1[U(x, \lambda_{p+1})]$ vanishes p+1 times on a < x < b for $p \ge 1$. $L_1[U(b,\lambda)] \neq 0$ for $\lambda_p < \lambda < \lambda_{p+1}$. Hence $L_1[U(x,\lambda)]$ vanishes p+1times on a < x < b for $\lambda_p < \lambda < \lambda_{p+1}$. But the roots of $L_1[U(x, \lambda)]$ and $L_1[u(x,\lambda)]$ separate one another, and $L_1[U(a,\lambda)] = 0$. $L_1[u(x,\lambda)]$ vanishes p+1 or p+2 times on a < x < b for $\lambda_p < \lambda < \lambda_{p+1}$, $p \ge 1$. Hence $L_1[u_p(x)]$ vanishes either p+1 or p+2 times on a < x < b, $p \ge 1$. But from (4) the number of zeros of $L_1[u_p(x)]$ is always even. Therefore we have p+2 roots if p is even and p+1 roots for p odd, $p \ge 1$. If $\beta_1(a) \equiv 0$ in (Λ) and $\beta_1(b) \neq 0$, the sign of $L_2[U(b, \lambda_0)]$ is that of $\alpha_1(a)/\beta_1(b)$, and $\phi(\mathcal{L}_1+\epsilon)$ has the sign of $\beta_1(b)/\alpha_1(a)$. Hence we have

 $\alpha_1(a)/\beta_1(b)$, and $\phi(\mathcal{L}_1 + \epsilon)$ has the sign of $\beta_1(b)/\alpha_1(a)$. Hence we have Case I where l_p is on the interval $\lambda_p < \lambda < \lambda_{p+1}$. If $\alpha_1(a)\beta_1(b) < 0$, by Theorem I, $L_1[U(x,\lambda_p)]$ vanishes p times on a < x < b and $L_1[U(x,\lambda_{p+1})]$ vanishes p+1 times on a < x < b. Reasoning exactly as above, we find that $L_1[u_p(x)]$ vanishes p+2 times on a < x < b if p is even and p+1

^{*} Existence Theorems for the General, Real, Self-Adjoint Linear System of the Second Order, these Transactions, vol. 19 (1918), p. 94.

 $[\]dagger \phi(\lambda) = 0$ is the characteristic equation of (4) whose roots are the characteristic numbers, l_p . $L_1 + \epsilon$ is a value of λ in (Λ) near L_1 .

[‡] Existence and Oscillation Theorem for a Certain Boundary Value Problem, these Transactions, vol. 10 (1909), pp. 259-270.

[§] Bôcher, Leçons, p. 48.

times if p is odd, $p \ge 1$. If $\alpha_1(a) \beta_1(b) > 0$, by Theorem I, $L_1[U(x, \lambda_p)]$ vanishes p-1 times on a < x < b, and $L_1[U(x, \lambda_{p+1})]$ vanishes p times on a < x < b. But $L_1[U(b, \lambda)] \neq 0$ for $\lambda_p < \lambda < \lambda_{p+1}$, and $L_1[U(a, \lambda)] = 0$. The roots of $L_1[U(x, \lambda)]$ and $L_1[u(x, \lambda)]$ separate one another. Hence $L_1[u_p(x)]$ vanishes either p or p+1 times on a < x < b, $p \ge 1$. But from (4) the number of zeros of $L_1[u_p(x)]$ is always even. Therefore we have p roots if p is even and p+1 roots if p is odd.

If $\beta_1(b) \equiv 0$ in (Λ) and $\beta_1(a) \neq 0$, the sign of $L_2[U(b, \lambda_0)]$ is that of $-\beta_1(a)/\alpha_1(b)$, and $\phi(\mathcal{L}_1 + \epsilon)$ has the sign of $-\beta_1(a)/\alpha_1(b)$. Hence we have Case I again. If $\alpha_1(b)\beta_1(a) < 0$ we proceed as before and obtain p+2 zeros of $L_1[u_p(x)]$ on a < x < b if p is even and p+1 zeros if p is odd, $p \geq 1$. If $\alpha_1(b)\beta_1(a) > 0$, we obtain p zeros of $L_1[u_p(x)]$ on a < x < b if p is even and p+1 zeros if p is odd, $p \geq 1$.

If $\beta_1 \neq 0$ in (X, Λ) , the sign of $L_2[U(b, \lambda_0)]$ is that of $\beta_1(a)/\beta_1(b)$, which is positive. The sign of $\phi(\mathcal{L}_1 + \epsilon)$ is that of $\beta_1(a)\beta_2(b) - \beta_2(a)\beta_1(b)$ if $\beta_1(a)\beta_2(b) - \beta_2(a)\beta_1(b)$ does not vanish. If

$$\beta_1(a)\beta_2(b) - \beta_2(a)\beta_1(b) = 0$$
,

the sign of ϕ ($\mathcal{L}_1 + \epsilon$) is that of $\beta_1(a)\beta_1(b)$, which is positive. Accordingly, if $\beta_1(a)\beta_2(b) - \beta_2(a)\beta_1(b) \ge 0$, we have Case I, and l_p is on $\lambda_p < \lambda < \lambda_{p+1}$. By Theorem I, $L_1[U(x,\lambda_p)]$ vanishes p-1 times, and, proceeding as above, we find that $L_1[u_p(x)]$ has p zeros if p is even and p+1 zeros if p is odd, $p \ge 1$. Likewise, if $\beta_1(a)\beta_2(b) - \beta_2(a)\beta_1(b) < 0$, l_p is on $\lambda_{p-1} < \lambda < \lambda_p$, and $L[u_p(x)]$ will vanish p times if p is even and p-1 times if p is odd, $p \ge 1$.

Summarizing the various kinds of coefficients of the boundary conditions of (4) as follows:

```
A: \beta_1 \equiv 0 in (X, \Lambda);

B: Either \beta_1(a) \equiv 0 in (\Lambda), \beta_1(x, \lambda) \neq 0 in a < x \leq b, and \alpha_1(a)\beta_1(b) < 0;

or \beta_1(b) \equiv 0 in (\Lambda), \beta_1(x, \lambda) \neq 0 in a \leq x < b, and \alpha_1(b)\beta_1(a) < 0;

B: Either \beta_1(a) \equiv 0 in (\Lambda), \beta_1(x, \lambda) \neq 0 in a < x \leq b, and \alpha_1(a)\beta_1(b) > 0;

or \beta_1(b) \equiv 0 in (\Lambda), \beta_1(x, \lambda) \neq 0 in a \leq x < b, and \alpha_1(a)\beta_1(b) > 0;

or \beta_1(b) \equiv 0 in (\Lambda), \beta_1(x, \lambda) \neq 0 in a \leq x < b, and \alpha_1(b)\beta_1(a) > 0;

C: \beta_1 \neq 0 in (X, \Lambda) and \beta_1(a)\beta_2(b) - \beta_2(a)\beta_1(b) \geq 0 in (\Lambda);

we state
```

OSCILLATION THEOREM III. If $u_p(x)$ is the pth characteristic function corresponding to a simple value of the system (4) satisfying conditions I-VIII,

then the number of zeros of $L_1[u_p(x)]$ on a < x < b for $p \ge 1$ is given by the following table:

Case	Number of zeros	
	p = 2m	p=2m+1
A or B ⁻	p+2	p+1
B^+ or C^-	. p	p+1
C^+	p	p-1.

Furthermore, we notice that, since $\alpha_1 \beta_2 - \alpha_2 \beta_1 \neq 0$ in (X, Λ) , the zeros of $L_1[u_p(x)]$ and $L_2[u_p(x)]$ separate one another on X,* and, if $\lambda = l_p$ is a double value, the number of zeros of $L_2[u_p(x)]$ is given by Theorem II. If $\lambda = l_p$ is a simple value, both $L_1[u_p(x)]$ and $L_2[u_p(x)]$ by (4) have an even number of zeros on (X). Hence they oscillate the same number of times. Therefore

COROLLARY. The number of zeros of $L_2[u_p(x)]$ on a < x < b, for $p \ge 1$, is precisely the number given in the table of Theorem III.

From the foregoing results we may deduce the number of oscillations of $u_p(x)$. If $\lambda = l_p$ is a double value, then $u_p(x)$ will differ from $U(x, \lambda_{p-1})$, $U(x, \lambda_p)$, or $U(x, \lambda_{p+1})$ by at most a non-vanishing factor, and the number of zeros of $u_p(x)$ will be given by the Sturmian Oscillation Theorem.

For a simple value we consider the following cases:

If $\beta_1 \equiv 0$ in (X, Λ) the zeros of $u_p(x)$ and $L_1[u_p(x)]$ coincide. Hence $u_p(x)$ has p+2 zeros if p=2m and p+1 zeros if p=2m+1.

H $\beta_1 \neq 0$ in (X, Λ) or $\beta_1(a) \equiv 0$, $\beta_1(b) \neq 0$ or $\beta_1(b) \equiv 0$, $\beta_1(a) \neq 0$, we write the first boundary condition of (4)

$$u_p(a) \cdot P(a) = u_p(b) \cdot P(b),$$

where

$$P_{1}(x) = \alpha_{1}(x) - \beta_{1}(x)K(x)u'_{p}(x)/u_{p}(x).$$

If $P_1(a)P_1(b) > 0$, $u_p(a)u_p(b)$ will be positive and $u_p(x)$ has an even number of roots. But the zeros of $u_p(x)$ and $L_1[u_p(x)]$ separate. Hence $u_p(x)$ and $L_1[u_p(x)]$ have the same number of zeros on a < x < b. If $P_1(a)P_1(b) < 0$, $u_p(a)u_p(b)$ will be negative and $u_p(x)$ has an odd number of zeros. Hence $u_p(x)$ will have one more or one less zero than $L_1[u_p(x)]$ on a < x < b.

It is also to be noticed that in Case I, since l_p is on $(\lambda_p, \lambda_{p+1})$, $u_p(x)$ can vanish not more than p+2 times nor less than p-1 times. In Case II, since l_p is on $(\lambda_{p-1}, \lambda_p)$, $u_p(x)$ can vanish not more than p+1 times nor less than p-2 times. \dagger

Designating the condition $P_1(a) \cdot P_1(b) > 0$ by P^+ and the condition $P_1(a) \cdot P_1(b) < 0$ by P^- , we may state

^{*} Bocher, Lecons, p. 50.

[†] Cf. Cor., p. 96 of the paper of the author referred to above.

OSCILLATION THEOREM IV. If $u_p(x)$ is the pth characteristic function corresponding to a simple value of the system (4) satisfying conditions I-VIII, then the number of zeros of $u_p(x)$ on a < x < b, for $p \ge 1$, is given by the following table:

Case	Number of zeros		
		p = 2m	p=2m+1
\boldsymbol{A}		p+2	p+1
$B^ P^+$		p+2	p+1
B^-P^-		p+1	p+2 or p
$B^+ P^+$		$oldsymbol{p}$	p + 1
B^+P^-	p	+1 or p-1	p + 2 or p
C^+P^+		$oldsymbol{p}$	p+1
C^+P^-		+1 or p-1	p+2 or p
C^-P^+		$oldsymbol{p}$	p-1
C^-P^-		+1 or p-1	p or p - 2

Note: if in particular we choose

$$\overline{\alpha}_i(x,\lambda) = \frac{(b-x)\alpha_i(\lambda) + (x-a)\gamma_i(\lambda)}{b-a}$$

$$\overline{\beta}_i(x,\lambda) = \frac{(b-x)\beta_i(\lambda) + (a-x)\delta_i(\lambda)}{b-a}$$

the system (4) becomes identical with that of (4) of the paper by the writer to which reference has been made above. If $\beta_i \delta_i > 0$, it will be necessary to modify the boundary conditions of (4) by taking

$$L_i[u(a,\lambda)] = -L_i[u(b,\lambda)]$$

with condition VII replaced by

$$\alpha_1(a)\beta_2(a) - \alpha_2(a)\beta_1(a) = \alpha_2(b)\beta_1(b) - \alpha_1(b)\beta_2(b) = -1$$

if only one of the boundary conditions is modified. If both boundary conditions are modified, condition VII remains unchanged. In either case conditions I-VI and VIII will be satisfied. The oscillation theorems will be true with the modification that $L_i[u_p(x)]$ will have an odd number of zeros.

University of Texas, Austin, Texas